Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25195, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352799

RESUMO

Cuprous oxide/copper/cupric oxide nanoparticles were synthesized through a hybrid process involving anodic dissolution and a controlled redox reaction between NaOH and glucose in the solution. The study demonstrates the structural manipulation of the material by varying the reaction components within the solution. Morphology, structural analyses using SEM (Scanning Electron Microscope), EDX (Energy-dispersive X-ray spectroscopy), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy) unveiled the tunability of the material's structure based on the reaction components. Nitrogen adsorption analysis employing the Brunauer-Emmett-Teller (BET) equation confirmed the material's porosity, while Dynamic Light Scattering (DLS) measurements provided insights into the materials' hydrodynamic size and zeta potential. The results demonstrated that by increasing the glucose/NaOH ratio during the reaction, the different structures and morphologies of the distinct products were obtained from the clustering of small nanoparticles to cubic shape and flower-like structure. Antibacterial activity tests conducted on various bacterial strains showed a correlation between the morphology and structure of the material and its antibacterial properties. The highest substantial antibacterial efficacy against all tested bacterial strains at a dosage of 100 µg/L was obtained for the samples with clustering morphology, whereas the remaining materials showed no discernible antibacterial effect against one of the studied bacteria. The results also demonstrated that the sample with a clustering structure exhibited superior antibacterial properties when dispersed in water containing dimethylsulfoxide.

2.
Biomed Phys Eng Express ; 10(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237173

RESUMO

Silver nanoparticles (AgNPs) in the form of nanospheres from a few nm to 100 nm in diameter were synthesized in a controlled manner using a combination of two reducing agents: sodium borohydride (SBH) and trisodium citrate (TSC). The influence of the size of AgNPs on antibacterial activity was investigated with different concentrations of AgNPs on two types of bacteria:Pseudomonas aeruginosa(PA) andStaphylococcus aureusresistant (SA) while the positive control wasAmpicillin (Amp)50µg/ml and the negative control was water. AgNPs were investigated for morphology, size and size distribution using transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The optical properties of the AgNPs were investigated by recording their UV-vis absorption spectra. The antimicrobial activity of AgNPs was determined using the disc diffusion method. The results showed that the antibacterial ability of AgNPs depends on both concentration and particle size. With a particle concentration of 50µg ml-1, the antibacterial ability is the best. The smaller the particle size, the higher the antibacterial ability. The simultaneous use of two reducing agents TSC and SBH is the novelty of the article to synthesize AgNPs particles that are uniform in shape and size while controlling the particle size. On that basis, their antibacterial performance is increased.


Assuntos
Boroidretos , Nanopartículas Metálicas , Prata , Substâncias Redutoras , Escherichia coli , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...